Kin interview

August 30th, 2016 § Comments Off on Kin interview § permalink

Ever since Kin was little, he has dreamed of being able to fly and see all the beautiful places in the world. Kin, previously working in sales training and a CNC automotive production line, decided to start working on his helicopter project in his own home in the year of 2014. His first version consisted of a TV with a helicopter simulation software that he devised. The first lesson he taught himself was how to park at Pudong airport with a virtual helicopter simulation. Later he tried to do something more complicated and difficult such as following a red line and red circle in the simulation. It took about 10 hours for him to master that and it helped him get a basic understanding of how flight simulators and helicopters work.

Afterwards, he started reading more about how helicopters work and the theory behind why it works the way it does to gain further knowledge about it. Starting from there, he had a new goal of building a motion flight simulator. The flight simulator that he had was missing a couple crucial elements that were necessary to flying a real helicopter. First, the screen did not allow for proper visualization of a real flight. The human eye has an angle view of around 150 degrees, unfortunately the screen had no more than 70 degrees of vision, less than half the realistic view. This inspired him to build a second model with a wider angle of vision. He used two projectors reinforced behind the seat by beams for stability and two screens side by side which revealed a clearer picture and increased the angle of view to 100 degrees. With his second model, it was more visually appealing and realistic however, it still lacked the motion that would give a realistic helicopter experience.

That is when, Kin started thinking about adding a motion component to his flight simulator. This was a conflict because the room he was doing it in was too small to encompass such a big project. His room was about 5 square meters and could not fit in any motion equipment. In 2015 he was walking in the subway and saw a video of Xinchejian and was amazed that there was such a space for people to build projects. He was immediately excited of Xinchejian and decided to visit the area. He saw many people working on their own projects, big and small, and then decided to move his project into Xinchejian.

The most difficult part to building his third version of the flight simulator/ first version of his motion flight simulator was that he could not get all the parts he needed as they were very specific parts and could not be bought off the shelf at any store. He started working on the design and making a list of all the parts that he needed and contacted vendors to see if they could help with this issue. The vendors were usually able to help Kin with his parts but it was very expensive to create something very complicated especially very small, highly detailed parts. Vendors can charge over 1000 RMB for a small part and for complicated, high precision parts, they usually refuse to. It made no sense to him to pursue the project it costs 1000 RMB to make one test piece as it may cost him way more to finish the entire machine.

Facing this dilemma, Kin thought it would be a better idea to just design his own CNC machine (describe what it is). Working in the automation production line in 2011, he had 7 months of experience in building CNC machines. In that span of time he built 3 different CNC machines so he had a good general concept of how to build it at this time. He figured that although it may be difficult for the manufacturer to produce the parts that he needed, it was not difficult to him so he decided to build his own machine to create his own parts. Vendors usually charge a lot because of the programming but Kin already knew how to program so it was easier and cheaper for him to build his own machine. It cost him around 30,000 RMB and took him about 3 months to build it. It is a small CNC machine and can only make parts the size of 100mm x 100mm but it was enough to help him with most of the parts that he needed.

After building the CNC machine, his dream of building a motion flight simulator was almost completed. It took him a month to produce all the parts he needed with his CNC machine and took another month for the manufacturers to produce the parts that he could not. Afterwards, he was able to assemble and build his first version of a motion flight simulator. He experimented with different screen options such as a big screen being projected on by two projectors behind the seat. He also experimented with Virtual Reality goggles such as the Facebook owned Oculus rift. At Xinchejian, there was not enough space in the room for him to test out the turning mechanism with the projector and screen so he replaced it with three monitors and was able to get it moving.

What else will be done?

Kin plans to make a second version of his motion flight simulator. His second version will vary from the first in that it will have a 7 axis motion platform instead of the current 4. The current design only has 4 axis of freedom, one controlling the up and down movement, one for tilt, one for roll, and the bottom for the rotation. With the second design, it will include 3 new axis of freedom, a horizontal axis of freedom controlling left to right motion, one for the side to side movement, full degree of angle acceleration. The current also has a maximum tilt degree of 30 degrees. The new design has a maximum platform degree of over 60 degrees but for safety reasons, it will be capped at 60. This 7 axis motion platform will make the motion flight simulator more realistic. This new design is revolutionary because no one has incorporated all these components before. Version two will take approximately 4 months and Kin hopes it will be finished in November of 2016. He plans to have a workshop when finished and if people are interested, Kin would like to show have a “How to build a helicopter simulator” workshop but only if a lot of people are interested.

After the completion of his version two, he will build a version 3 of his motion flight simulator which will take about 8 months after version two to complete. Kin expects it to be available around July of 2017. After version 3 and using the same concept and structural designs, Kin plans on building a robotic arm that can move as much as the human arm, up and down, rotating in every angle, and being able to push, pull, and lift. It will be able to go up and down while it rotates and up and down while it pushes. It can also stretch out and recompress. The most important quality of the robotic arm is that it will be able to lift a lot of weight. With the design that he has in mind, Kin expects the robotic arm to weigh about 60 kg, and stand about 400 mm. It should lift at least 40 kg and have 45 degrees of freedom on either side. The meaning of this application is that you can build very high precision applications with the robotic arm.

Conventional robotic arm has all its connections on a gear box. The limit of the gear box, is very obvious and requires a lot of torque which is one downside. It is very difficult to give it precision when lifting heavy weights with conventional robotic arms Kin’s design takes that into consideration and is able to bypass the limit allowing his robotic arm to move and life very precisely.

Kin has taught not only himself but 8 other students how to fly a helicopter with his simulation. They all have learned how to fly with 9 hours of land instructions, 1 hour on the flight simulator and 10 minutes with real helicopter flight. Kin still has many ideas and a lot more projects that he want to do in the future. He is a very resourceful and ambitious person. He seeks out knowledge by watching videos and going on Tao Bao and getting tips from the merchants on what parts to use and how to use it. He is very excited about the possibilities and applications of his innovations and hopes to help share his dream of flying to all those around him.

New Intern Yu Liu

June 22nd, 2016 § Comments Off on New Intern Yu Liu § permalink

My name is Yu Liu and I will be a rising junior at the University of Florida this coming fall. I am majoring in Electrical Engineering and I will be interning at XinCheJian from June 20th to August 14th. I hope to gain experience in electronic designs and learn as much as I can these next few weeks. As an intern here at XinCheJian, I will be keeping the space clean and organized, helping out with workshops, marketing the site, and assisting staff while also working on my own project.
I will be working on an electronic skateboard project with Dooho (another intern). We were generously provided a board from Eduardo and will be trying to implement a lightweight, yet effective design. We will also be helping Eduardo out with a light sensing robot that he will be showcasing at Mobile World Congress (MWC) in Shanghai. We will be learning how to build the small robot and then we will be teaching 14-18 year olds at the MWC event where there will be over 70,000 attendees and 8000 companies.

Here’s to a great 8 weeks!

MWC SHANGHAI – http://www.mwcshanghai.com/

 

IMG_8150

New interns: Yu Liu (Right) Dooho (left) messing with the tools in Xinfab

创客的设计思维工作坊 9月19号|Design Thinking for Makers Workshop Sep 19th

September 14th, 2015 § 1 comment § permalink

上海静安愚园东路28号3号楼一楼 新车间
2
报名参加 Sign Up

Fee:
RMB 200. RMB 150 for XinCheJian members.

Intro to Design Thinking for Makers:
Innovative companies, and inventors in general, don’t just come up with new product ideas out of thin air. They used problem-solving methods, such as “design thinking” to establish competitive advantage. These methods focus on listening to user needs, empathy, logical and creative thinking, collaboration, and experimentation. Design thinking methods can be applied in any field, and even in personal life, and can go a long way in helping makers create products that solve real needs.
This intensive hands-on workshop will go through all the steps of the design process, but will spend most of the time on tools and methods to build empathy for the users, as this crucial first step often proves to be challenging in certain contexts (cultural and mindset)

This workshop can help you:
· become a better innovator
· learn which questions can lead to uncovering hidden needs
· solve complex challenges at work or in life
· combine creativity and innovation with logic and analysis
· become a better collaborator

What to expect:
This will be an intensive hands-on workshop that goes through the whole design thinking process and helps you learn-by-doing. You won’t be sitting, listening to a boring lecture, but getting your hands dirty and interacting with each other right from the beginning.

Who should enroll:
This workshop is ideal for not only makers interested into turning their ideas into real products or services but also professionals from any industry that are interested in learning new approaches to problem solving.

Where Am I?

You are currently browsing the workshop category at 新车间 [XinCheJian].

  • Language:

  • Join Xinchejian


    Scan this!